A function to give the summary of the CV's by the sampleID

cv_by_sample_estimation(
  dataCV,
  cv_variable,
  lab_replicates,
  sampleID_var = "sampleID"
)

Arguments

dataCV

A dataframe

cv_variable

A character string containing the identifier of the variable with CV values.

lab_replicates

A numeric value indicating the number of lab replicates.

sampleID_var

A character string containing the name of the sample identifier variable. Default set to 'sampleID'

Value

A data frame of CV calculated by sample

Details

Summarise CV by samples

Examples

dataC <- readr::read_csv(system.file("extdata", 
"dataC.csv", package="protGear"))
#> Rows: 567 Columns: 11
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (3): sampleID, antigen, iden
#> dbl (8): sample_array_ID, FMedian, BGMedian, FMedianBG_correct, Block, Colum...
#> 
#>  Use `spec()` to retrieve the full column specification for this data.
#>  Specify the column types or set `show_col_types = FALSE` to quiet this message.
## this file has 3 lab replicates and the default names
dataCV <- cv_estimation(dataC  ,lab_replicates=3)
#> Warning: The replicates are as expected per sample per antigen
cv_by_sample_estimation(dataCV, cv_variable = "cvCat_all",
 lab_replicates = 3)
#> # A tibble: 21 × 7
#>    sampleID `CV <= 20_n` `CV <= 20_perc` `CV > 20_n` CV > 20_p…¹ Other…² Other…³
#>    <chr>           <dbl>           <dbl>       <dbl>       <dbl>   <dbl>   <dbl>
#>  1 0.0085              5            83.3           1        16.7       0     0  
#>  2 0.0255              3            50             2        33.3       1    16.7
#>  3 0.076               3            50             2        33.3       1    16.7
#>  4 0.23                4            66.7           2        33.3       0     0  
#>  5 0.73                4            66.7           1        16.7       1    16.7
#>  6 177.78              6           100             0         0         0     0  
#>  7 19.75               5            83.3           1        16.7       0     0  
#>  8 2.19                3            50             3        50         0     0  
#>  9 533                 6           100             0         0         0     0  
#> 10 59.26               5            83.3           1        16.7       0     0  
#> # … with 11 more rows, and abbreviated variable names ¹​`CV > 20_perc`,
#> #   ²​Others_n, ³​Others_perc